Skip to main content

Overview

Aegle is a comprehensive pipeline for analyzing multiplex imaging data from PhenoCycler/CODEX platforms, providing end-to-end processing from raw images to single-cell insights.

Pipeline Architecture

Aegle Main Pipeline

For detailed documentation, see the specific sections in the sidebar.

Experiment Configuration

Aegle Experiment Configuration Pipeline

The configuration system automates experiment setup through:

  • CSV Design Tables: Define experiments in Google Sheets and export to CSV
  • YAML Templates: Standardized parameter templates for reproducibility
  • Batch Generation: Generate configurations for multiple experiments simultaneously
  • Validation: Automatic type conversion and parameter validation

Quick Start:

cd exps/
python config_generator.py

Data Preprocessing

Aegle Preprocessing Pipeline

Preprocessing transforms raw QPTIFF files into analysis-ready data:

1. Tissue Extraction

  • Manual annotation (recommended): Interactive napari-based tool
  • Automatic detection: Computer vision-based tissue identification

2. Antibody Metadata

  • Extracts channel-to-antibody mappings from QPTIFF metadata
  • Generates standardized TSV files for downstream analysis

Execution:

./run_preprocess_ft.sh

Main Processing

Aegle Main Pipeline

Single-cell Analysis

Post-Analysis Visualization